Amphora Consulting Logo

Visual examination of concrete structures 

Visual examination consists of the observation of visible defects on the surface of a structural element with a view to locating and classifying defects. It is a non-invasive examination and can provide insight into areas that may require more detailed investigation. 

The examination is normally carried out by experienced personnel who use sketches and photographs to record the defects, along with direct measures of their location and extent using tapes, rulers, crack width gauges or other small equipment.  

It is the most widely used inspection system and is generally reported using a formal inspection report.  

A systematic approach must be used to ensure total coverage, starting at one point in the structure and moving periodically through all elements. 

What do I need to carry out a visual examination of a concrete structure? 

Equipment used for visual examinations normally used includes: 

  • camera.

  • binoculars. 

  • flashlight.

  • clipboard and paper (or field book or formal inspection form).  

  • tape measure (15 to 30 m).  

  • graduated ruler (1 mm).  

  • crack gauge.  

  • depth gauge. 

  • knife.  

  • hammer (1 kg). 

Visual examination can be carried out without the need for special access but the value of an inspection can be reduced where elements cannot be approached, e.g., high bridges, low-clearance bridges and culverts, inside box girders, etc. If a comprehensive visual examination is required (e.g., for a Principle Inspection), it is necessary to approach all surfaces to within touching distance.  

Access to some parts of the structure may require specialized equipment, such as: 

  • ladders,  

  • scaffolding,  

  • truck mounted platforms,  

  • abseiling equipment,  

  • boats,  

  • diving apparatus,  

  • confined space equipment.  

  • Drones 

No visual survey should be undertaken without a risk assessment developed in the planning stage. 

 

What should I look for during a visual inspection? 

The objective of a visual survey is to identify and quantify any visible defects in the structure for further investigation. 

Each defect will indicate a specific set of deterioration mechanisms that could be at fault. Testing will then be employed in the next stage of the survey to ascertain which of these mechanisms is in fact the root cause of the damage and quantify how bad the problem is.  

How do I identify important defects and what do they mean? 

The tables below summarize the defects commonly found during visual examinations, how to identify them and the deterioration mechanism that may have caused them.  

Mechanisms marked with a * take place at a specific stage of concrete production such as during the casting and curing of the concrete (Shrinkage cracks, thermal cracks, honeycombing etc). Although the effects these defects have on the structure may intensify or fade with time, the process that created them has ceased.  

Defect 

Deterioration mechanisms 

Bugholes 

Under vibration 

Excessive concrete viscocity 

Evidence: 

Defect 

Deterioration mechanisms 

Early age cracks 

Thermal cracking* 

Shrinkage* 

Evidence: 

Crack identification 

 

 

 

Thermal cracking 

 

Shrinkage cracking  

 

 

 

 

Defect 

Deterioration mechanisms 

Structural cracks 

Fatigue 

Overloading 

Evidence: 

 

Defect 

Deterioration mechanisms 

Corrosion cracking 

Reinforcement corrosion 

Evidence 

 

 
 

Defect 

Deterioration mechanisms 

Expansive cracking 

Alkali Aggregate Reaction (AAR) 

Internal sulphate attack (ISA) 

Freeze / thaw 

Evidence: 

 

           ISA                                                                                            AAR              

 

 

Freeze / thaw 

 

Defect 

Deterioration mechanisms 

Deflection 

Alkali Aggregate Reaction (AAR) 

Internal sulphate attack (ISA) 

Creep 

Evidence: 

AAR 

 

Internal sulphate attack (ISA) 

Creep 

 

 

Defect 

Deterioration mechanisms 

Discoloration 

Acid attack 

Biological deterioration 

Alkali Aggregate Reaction (AAR) 

Internal sulphate attack (ISA) 

Fire 

Evidence: 

Acid attack 

 

 Biological deterioration 

 

 Alkali Aggregate Reaction (AAR) 

 Internal sulphate attack (ISA) 

 

 Fire 

 

Defect 

Deterioration mechanisms 

Efflorescence 

Leaching 

Alkali Aggregate Reaction (AAR) 

Internal sulphate attack (ISA) 

Evidence: 

Leaching 

Alkali Aggregate Reaction (AAR)

Internal Sulphate Attack (ISA)

Defect 

Deterioration mechanisms 

Elemental translation or rotation 

Alkali Aggregate Reaction (AAR) 

Internal sulphate attack (ISA) 

Creep 

Evidence: 

AAR 

ISA

Creep


 

DefectDeterioration mechanisms
Eroded concreteAcid attack
Abrasion / erosion

Evidence:

Acid attack

Abrasion / erosion

 

Defect 

Deterioration mechanisms 

Honeycombing 

Inadequate compaction* 

Excessive reinforcement density* 

Evidence: 

  

 

DefectDeterioration mechanisms
Inorganic, organic and biological contaminationBiological deterioration

Evidence:

 

Defect 

Deterioration mechanisms 

Pop outs 

Alkali Aggregate Reaction (AAR) 

Freeze / thaw 

Fire 

Evidence: 

AAR 

 

Freeze/Thaw

Fire

Defect 

Deterioration mechanisms 

Scaling 

Acid attack 

Alkali Aggregate Reaction (AAR) 

External sulphate attack (ESA) 

Freeze / thaw 

Abrasion / erosion 

Evidence: 

Acid attack 

AAR

ESA

Freeze / Thaw

Defect 

Deterioration mechanisms 

Spalling 

Reinforcement corrosion 

Chloride contamination 

Carbonation 

Evidence: 

Reinforcement corrosion 

Chloride contamination

Carbonation

Defect 

Deterioration mechanisms 

Steel fracture 

Alkali Aggregate Reaction (AAR) 

Reinforcement corrosion 

Evidence: 

AAR 

Reinforcement corrosion

Defect 

Deterioration mechanisms 

Steel loss 

Reinforcement corrosion 

Chloride contamination 

Carbonation 

Evidence: 

Reinforcement corrosion 

Chloride contamination

Carbonation

Back To Categories